Obsługa programu CoolPack

Do tworzenia wykresów przestawiających obiegi chłodnicze wykorzystywane są programy takie jak CoolPack czy Solkane. Poniżej zostanie omówiona obsługa programu CoolPack.

<u>Instalacja</u>

Program można pobrać ze strony: <u>http://www.en.ipu.dk/Indhold/refrigeration-and-energy-technology/coolpack.aspx</u>. Po pobraniu instalatora, należy go uruchomić i postępować zgodnie z instrukcjami wyświetlanymi na ekranie.

<u>Tworzenie wykresu log p – h</u>

Po zainstalowaniu i uruchomieniu programu wyświetli się okno z paskiem górnym następującej postaci:

Rysunek 1. Górny pasek programu CoolPack.

Na pasku należy kliknąć na ikonkę ze znakiem śnieżynki (zaznaczonym na Rysunku 3 czerwonym prostokątem). Po przyciśnięciu śnieżynki uruchomi się w nowym oknie moduł "Refrigeration utilities".

2			Refrigeration utilities
File	Window	Help	
∥л	🖻 🛛 🗲	· 🖬 🔟 🖾 📩 🏭 🖭 🗅 🐵 ?	

Rysunek 2. Górny pasek modułu "Refrigeration utilities".

Na górnym pasku należy kliknąć ikonę z symbolem wykresu log p–h (zaznaczoną czerwonym prostokątem na Rysunku 4). Po przyciśnięciu ikony pojawi się okno dialogowe z możliwością wyboru czynnika chłodniczego, dla którego ma być utworzony wykres (Rysunek 5).

Po wyborze odpowiedniego czynnika (wyboru dokonuje się poprzez dwukrotne kliknięcie lewym przyciskiem myszy na nazwie danego czynnika), program wygeneruje wykres (Rysunek 6).

Set properties for log(p)-h diagram; Current refrigerant: R11				
Refrigerant p, T, s and h Plot specific Reference				
Refrigerant: R11, CCI3F, Trichlorofluoromethane	ОК			
R111, CCI5F, Trichlorotluoromethane R113, CCI2FCCIF2, Trichlorotrifluoroethane R114, CCIF2CCIF2, Dichlorotetrafluoroethane	Cancel			
R1150, CH2=CH2, Ethene (ethylene) R12, CCl2F2, Dichlorodifluoromethane	<u>H</u> elp			
R123, CHCl2CF3, Dichlorotrifluoroethane R1270, CH3CH=CH2, Propene (propylene) R13, CCF3, Chlorotrifluoromethane	Load setting	35		
R134a, CH2FCF3, 1,1,1,2-tetrafluoroethane B14, CF4, Tetrafluoromethane	<u>S</u> ave setting	js		
R152a, CH3CHF2, 1,1-difluoroethane R170, CH3CH3, Ethane	<u>D</u> efault			
R21, UHU27, Dichiorofiluoromethane R22, CHCJR2, Chlorodifluoromethane R23, CHF3, Trifluoromethane R290, CH3CH2CH3, Propane R401A, R22/1524/124 (53/13/34), R401A				
Category: All				

Rysunek 3. Okno wyboru czynnika chłodniczego.

Parametry termodynamicznego danego punktu na wykresie można odczytywać poprzez najechanie kursorem myszy na dany punkt wykresu. W prawym dolnym rogu pojawią się parametry stanu (Rysunek 6 – obszar zaznaczony czerwonym prostokątem).

Rysunek 4. Wygenerowany wykres logp-h.

W celu wygenerowania obiegu chłodniczego o zadanych parametrach należy kliknąć ikonę z wizerunkiem obiegu chłodniczego (obszar zaznaczony czerwonym prostokątem na Rysunku 7).

Rysunek 5. Ikona modułu generującego wykres chłodniczy.

Po przyciśnięciu ikony pojawi się okno dialogowe gdzie należy wprowadzić parametry obiegu (Rysunek 8).

		Cycle input		×
Select cycle type: One stage Two stage, open inter	C Two stage, cooler C Two stage,	closed intercooler open intercooler, load at ir	ntermediate pressure	Edit cycle
Cycle name:			Draw cycle	Update
<u>Values:</u> <u>E</u> vaporating temperature: Sugerheat: Dp evaporator: Dp suction line: Dp discharge line: Isentropic efficiency [0-1]:	0,00 °C ▼ 0,00 K ▼ 0,00 Bar ▼ 0,00 Bar ▼ 1,00 Q loss	∑ondensing temperature: Su⊵cooling: Dp condenser: Dp liquid line:	0.00 °C v 0.00 K v 0.00 Bar v 0.00 Bar v	Calculated: Qe [kJ/kg]: 10000.000 Qc [kJ/kg]: 10000.00 COP: 2.34 W [kJ/kg] 10000.00 W high [kW] 10000.00 (m high)/(m low): 0.00000000 m low [kg/s]: 0.00000000
Draw cycle Show info	Copy cycle	Paste cycle Cano	cel <u>H</u> elp	m high [kg/s]: 0.00000000

Rysunek 6. Okno dialogowe do generowania obiegu chłodniczego.

W oknie znajdują się następujące pola:

- Evaporating temperature temperatura wrzenia. Można ją podać w stopniach Celsjusza lub, zmieniającej jednostkę na bar, podać ciśnienie parowania czynnika. Wypełnienie tego pola jest wymagane.
- Condensing temperature temperatura skraplania. Można ją podać w stopniach Celsjusza lub, zmieniającej jednostkę na bar, podać ciśnienie skraplania czynnika. Wypełnienie tego pola jest wymagane.
- Superheat przegrzew. Wartość przegrzewu mówi o ile czynnik jest przegrzany na wlocie do sprężarki w stosunku do temperatury w stanie nasycenia (odpowiadającej ciśnieniu parowania). Wartość przegrzewu można podać w K – wtedy podajemy różnicę temperatur między stanem nasycenia a wlotem do sprężarki lub w °C – wtedy podajemy bezpośrednio temperaturę na początku sprężania. Wypełnienie tego pola <u>nie jest</u> obowiązkowe.
- Subcooling dochodzenie. Wartość dochłodzenia mówi o ile czynnik jest przechłodzony na wlocie do elementu dławiącego w stosunku do temperatury w stanie nasycenia (odpowiadającej ciśnieniu skraplania). Wartość dochłodzenia można podać w K wtedy podajemy różnicę temperatur między stanem nasycenia a wlotem do elementu dławiącego lub w °C wtedy podajemy bezpośrednio temperaturę na początku dławienia. Wypełnienie tego pola <u>nie jest</u> obowiązkowe.
- Dp evaporator, Dp condenser, Dp suction line, Dp liquid line, Dp discharge line spadek ciśnienia odpowiednio w parowaczu, skraplaczu, przewodzie ssawnym (łączącym parowacz ze sprężarką), przewodzie cieczowym (łączącym skraplacz z elementem rozprężnym oraz element rozprężny z parowaczem) i przewodzie tłocznym (łączącym sprężarkę ze skraplaczem). Spadki ciśnień w poszczególnych elementach układu wynikają z oporów przepływu czynnika. Ich wartości mogą być podane w barach lub odpowiadającej temu spadkowi ciśnień różnicy temperatur nasycenia (w Kelwinach). Wypełnienie tego pola <u>nie jest</u> obowiązkowe.

 Isentropic efficiency – sprawność izentropowa sprężarki. Jest to wartość procentowa obliczana jako stosunek pracy obiegu przy sprężaniu izentropowym do rzeczywistej pracy obiegu. Doskonała sprężarka ma sprawność równą 1 (przy tym założeniu nie zmieniamy domyślnej wartości tego pola). Rzeczywiste sprężarki maja sprawność izentropową na poziomie 0,6-0,7.

Po wypełnieniu pól zatwierdzamy przyciskiem Draw cycle (zaznaczony czerwonym prostokątem na Rysunku 8). Na wykresie logp-h pojawi się obieg chłodniczy. W celu odczytu jego parametrów należy przycisnąć ikonę z symbolem obiegu chłodniczego w kolorze czerwonym (zaznaczoną czerwonym prostokątem na Rysunku 9).

	Refrigeration utilities - [Log(p)-h diagram: R134a, CH2FCF3, 1,1,1,2-tetrafluoroethane]
📷 File Edit Draw View Format Options Window Help	
』Л ☞ 🖨 🖬 凵 亾 너 🚮 🏭 🖄 🗇 ? 🗍 ₩	🔍 🔍 🔍 🖽 🛏 🛛 🤿 🚭 Cursor increment= 1

Rysunek 7. Wygenerowany obieg chłodniczy.

Po przyciśnięciu ikony pojawi się okno dialogowe przedstawione na Rysunku 10. Czarnym prostokątem zaznaczono obszar, gdzie program przedstawia obliczone wartości q_o (oznaczony w programie jako Qe), q_k (oznaczenie Qk), l_{ob} (oznaczenie W) oraz ε (oznaczenie COP). W celu dokładnego odczytania wartości parametrów stanu w charakterystycznych punktach obiegu należy kliknąć zaznaczony czerwonym prostokątem przycisk *Coordinates of Points*. Pojawi się nowe okno dialogowe z listą punktów obiegu wraz z ich parametrami. <u>Odczytu parametrów należy dokonywać z ostrożnością, ponieważ program wyświetla więcej punktów niż ma obieg podstawowy, a ponadto nie podaje wprost sposobu numeracji punktów. Należy więc samodzielnie zidentyfikować/potwierdzić poprawność podawanych przez program wartości na podstawie wykresu i narysowanego obiegu.</u>

Select cycle number:	Cycle i Vak Eva Sup Dp Dp	le info [One stage]. Ref <u>Values:</u> Evaporating temperature [°C]: Superheat [K]: Dp evaporator [bar]: Dp suction line [bar]: Dp discharge line [bar]:		eran 5,74),00),00),00	tt: R134a Condensing temperature (*C): Subcooling (K): Dp condenser (bar): Dp liquid line (bar):	× 55,24 0,00 0,00 0,00
Delete cycle Calculated: Qe [kJ/kg]: Qc [kJ/kg]: COP: W [kJ/kg]: Pressure ratio [-]:	126,355 148,824 5,62 22,469 3,000	Dimensioning: Qe [kW]: Qc [kW]: m [kg/s]: V [m^3/h]: W [kW]:	0,000 0,000 0,0000000 0,0000 0,000		Volumetric efficiency n_vol: 0.00 Displacement [m^3/h]: 0	
OK	Cgo	Q loss [kW];	0,000	int	<u>C</u> opy <u>U</u> pdate	Help

Rysunek 8. Okno dialogowe z obliczonymi przez program parametrami obiegu.